## Phong Normalization Factor derivation

I'll do pure-specular only (i.e. $C_{d}=0, C_{s}=1$ ), the mixed case is easy from there. Also, we're only interested in the maximum of reflected energy, which in the Phong model occurs when $L$ and $N$ are parallel to each other, which makes $R=N$ too (in all other cases, $R$ is "on the other side" of $N$ relative to $V$, hence the angle between $R$ and $V$ can never be smaller than the angle between $R$ and $N$ ). Anyway, this means that $R \cdot V=N \cdot V$, which is a value we already know, namely $\cos \theta$.

Moving on, the integral we now need to calculate is

$$
\begin{equation*}
\int_{\Omega}(\cos \theta)^{n} \mathrm{~d} \omega \tag{1}
\end{equation*}
$$

with $\Omega$ being the upper hemisphere; integrating in spherical coordinates, this is

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\pi / 2}(\cos \theta)^{n} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi=2 \pi \int_{0}^{\pi / 2}(\cos \theta)^{n} \sin \theta \mathrm{~d} \theta=: 2 \pi I_{n} \tag{2}
\end{equation*}
$$

and using integration by parts with $f=(\cos \theta)^{n}, g^{\prime}=\sin \theta$ on $I_{n}$ we get

$$
\begin{aligned}
I_{n} & =\left[(\cos \theta)^{n}(-\cos \theta)\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} n(\cos \theta)^{n-1}(-\sin \theta)(-\cos \theta) \mathrm{d} \theta \\
& =\left[-(\cos \theta)^{n+1}\right]_{0}^{\pi / 2}-n \int_{0}^{\pi / 2}(\cos \theta)^{n} \sin \theta \mathrm{~d} \theta \\
& =(-0+1)-n I_{n}
\end{aligned}
$$

so $(n+1) I_{n}=1$ which means that $I_{n}=\frac{1}{n+1}$. Plugging this into (2) tells us that (1) equals $\frac{2 \pi}{n+1}$, so the normalization factor if we want it to integrate to 1 is the reciprocal, which is $\frac{n+1}{2 \pi}$.

Why $\frac{n+1}{2}$ and not $n+2$ ? Because this is the derivation for the original Phong formulation, where the $R \cdot V$ term is not multiplied by $\cos \theta$. If you write that version of the Phong model as a $\operatorname{BRDF}$, you end up with a $\cos \theta$ in the numerator to cancel out the $\cos \theta$ factor in the reflection equation. This numerator is complete nonsense physically, so the modern formulation of the Phong model removes it. Then the integral becomes

$$
\int_{\Omega}(R \cdot V) \cos \theta \mathrm{d} \omega \stackrel{L=N}{=} \int_{\Omega}(\cos \theta)^{n+1} \mathrm{~d} \omega
$$

and our normalization factor computation cranks out $\frac{n+2}{2}$, as expected.

## Blinn-Phong normalization factor

I'll again limit myself to the specular term and again assume that the maximum reflected energy occurs with $L=N$ (I have no proof for the latter though, but I do have some experimental evidence. If I find a nice proof later, I'll update this document accordingly. Anyway, with $L=N$, things get a lot simpler than the general case because $L, N, V$, and $H$ all lie in the same plane and we can work exclusively with angles. Particularly, the angle $\theta_{h}$ between $H$ and $N$ is exactly half of the angle $\theta$ between $V$ and $N$, and the integral we need to evaluate boils down to

$$
\int_{\Omega}\left(\cos \theta_{h}\right)^{n} \cos \theta d \omega=\int_{\Omega}(\cos (\theta / 2))^{n} \cos \theta d \omega
$$

(I'll only do the BRDF version with the extra factor of $\cos \theta$ here). Again integrating in spherical coordinates, we get

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\pi / 2}(\cos (\theta / 2))^{n} \cos \theta \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi=2 \pi \int_{0}^{\pi / 2}(\cos (\theta / 2))^{n} \cos \theta \sin \theta \mathrm{~d} \theta \tag{3}
\end{equation*}
$$

and using the half-angle formula $\cos (\theta / 2)=\sqrt{\frac{1+\cos \theta}{2}}$ and the substitution $t=\cos \theta$ (which gives $\mathrm{d} t=-\sin \theta \mathrm{d} \theta)$ we get

$$
(3)=-2 \pi \int_{1}^{0}\left(\sqrt{\frac{1+t}{2}}\right)^{n} t \mathrm{~d} t=2 \pi \int_{0}^{1}\left(\frac{1+t}{2}\right)^{n / 2} t \mathrm{~d} t
$$

which can be evaluated using integration by parts, this time using $f=t$ and $g^{\prime}=((1+t) / 2)^{n / 2}$. This yields:

$$
\begin{aligned}
& 2 \pi\left(\left[\frac{4}{n+2} t\left(\frac{1+t}{2}\right)^{(n+2) / 2}\right]_{t=0}^{1}-\frac{4}{n+2} \int_{0}^{1}\left(\frac{1+t}{2}\right)^{(n+2) / 2} \mathrm{~d} t\right) \\
= & \frac{8 \pi}{n+2}\left(\left[t\left(\frac{1+t}{2}\right)^{(n+2) / 2}\right]_{t=0}^{1}-\int_{0}^{1}\left(\frac{1+t}{2}\right)^{(n+2) / 2} \mathrm{~d} t\right) \\
= & \frac{8 \pi}{n+2}\left(\left[t\left(\frac{1+t}{2}\right)^{(n+2) / 2}\right]_{t=0}^{1}-\frac{4}{n+4}\left[\left(\frac{1+t}{2}\right)^{(n+4) / 2}\right]_{t=0}^{1}\right) \\
= & \frac{8 \pi}{n+2}\left(1-\frac{4}{n+4}\left(1-\left(\frac{1}{2}\right)^{(n+4) / 2}\right)\right) \\
= & \frac{8 \pi\left((n+4)-4+2^{-n / 2}\right)}{(n+2)(n+4)} \\
= & \frac{8 \pi\left(n+2^{-n / 2}\right)}{(n+2)(n+4)}
\end{aligned}
$$

which makes the Blinn-Phong normalization factor $\frac{(n+2)(n+4)}{8 \pi\left(2^{-n / 2}+n\right)}$, not $\frac{n+8}{8 \pi}$.

