
DCT-II vs. KLT/PCA

1 Stationary Markov-1 signals

Just the definition: A stationary Markov-1 signal is a signal (vector) x whose autocorrelation
matrix has the form

A = (ρ|i−j|)1≤i,j≤N

where 0 < ρ < 1 is the autocorrelation coefficient. Typical values for ρ range between 0.95 and
0.99.

2 KLT for stationary Markov-1 signals and the DCT-II

There’s a closed form for the KLT basis functions for such a process (i.e. the eigenvectors of
A): They are
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with wm being the real roots of the equation

tan(Nw) = − (1− ρ2) sin(w)
cos(w)− 2ρ+ ρ2 cos(w)

(3)

in the interval (0, π). Proof of this can be found in [1]. Letting ρ→ 1 in (3), one obtains:

tan(Nw) = − 0
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(4)

and since the real roots of tan are precisely kπ with k ∈ Z, a suitable choice of wk is

wk =
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N
, 1 ≤ k ≤ N.

For even k, cos(wk) = −1 and (4) is well-defined. For odd k though, cos(wk) = 1 and hence
the denominator is zero; applying l’Hospitals rule yields:
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so odd k are valid too. Plugging this into (2) yields that µk must be zero for 2 ≤ k ≤ N .
For k = 1 the denominator is zero again; using a different trick this time, we note that the
main diagonal of A consists only of ones for any choice of ρ, and since the trace of a matrix is
invariant under similarity transformations (change of basis), we have

N =
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Inserting this into (1) yields:
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1 otherwise,

which are precisely the DCT-II basis functions.
Figure 1 shows the KLT basis functions with ρ = 0.95 and the DCT-I and DCT-II basis

functions for N = 16.
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Figure 1: KLT, DCT-I and DCT-II basis functions with N = 16, ρ = 0.95.
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