
Phong Normalization Factor derivation

I’ll do pure-specular only (i.e. Cd = 0, Cs = 1), the mixed case is easy from there. Also, we’re
only interested in the maximum of reflected energy, which in the Phong model occurs when
L and N are parallel to each other, which makes R = N too (in all other cases, R is “on the
other side” of N relative to V , hence the angle between R and V can never be smaller than
the angle between R and N). Anyway, this means that R · V = N · V , which is a value we
already know, namely cos θ.

Moving on, the integral we now need to calculate is∫
Ω

(cos θ)ndω (1)

with Ω being the upper hemisphere; integrating in spherical coordinates, this is∫ 2π

0

∫ π/2

0
(cos θ)n sin θ dθdφ = 2π

∫ π/2

0
(cos θ)n sin θ dθ =: 2πIn (2)

and using integration by parts with f = (cos θ)n, g′ = sin θ on In we get

In = [(cos θ)n(− cos θ)]π/20 −
∫ π/2

0
n(cos θ)n−1(− sin θ)(− cos θ) dθ

=
[
−(cos θ)n+1

]π/2
0

− n

∫ π/2

0
(cos θ)n sin θ dθ

= (−0 + 1) − nIn

so (n + 1)In = 1 which means that In = 1
n+1 . Plugging this into (2) tells us that (1) equals

2π
n+1 , so the normalization factor if we want it to integrate to 1 is the reciprocal, which is n+1

2π .
Why n+1

2 and not n+ 2? Because this is the derivation for the original Phong formulation,
where the R ·V term is not multiplied by cos θ. If you write that version of the Phong model as
a BRDF, you end up with a cos θ in the numerator to cancel out the cos θ factor in the reflection
equation. This numerator is complete nonsense physically, so the modern formulation of the
Phong model removes it. Then the integral becomes∫

Ω
(R · V ) cos θ dω L=N=

∫
Ω

(cos θ)n+1 dω

and our normalization factor computation cranks out n+2
2 , as expected.
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Blinn-Phong normalization factor

I’ll again limit myself to the specular term and again assume that the maximum reflected energy
occurs with L = N (I have no proof for the latter though, but I do have some experimental
evidence. If I find a nice proof later, I’ll update this document accordingly. Anyway, with
L = N , things get a lot simpler than the general case because L, N , V , and H all lie in the
same plane and we can work exclusively with angles. Particularly, the angle θh between H and
N is exactly half of the angle θ between V and N , and the integral we need to evaluate boils
down to ∫

Ω
(cos θh)n cos θ dω =

∫
Ω

(cos θ/2)n cos θ dω

(I’ll only do the BRDF version with the extra factor of cos θ here). Again integrating in
spherical coordinates, we get∫ 2π

0

∫ π/2

0
(cos θ/2)n cos θ sin θ dθdφ = 2π

∫ π/2

0
(cos θ/2)n cos θ sin θ dθ (3)

and using the half-angle formula cos(θ/2) =
√

1+cos θ
2 and the substitution t = cos θ (which

gives dt = − sin θ dθ) we get

(3) = −2π
∫ 0

1

(√
1 + t

2

)n
tdt = 2π

∫ 1

0

(
1 + t

2

)n/2
tdt

which can be evaluated using integration by parts, this time using f = t and g′ = ((1+t)/2)n/2.
This yields:

2π

[ 4
n+ 2

t

(
1 + t

2

)(n+2)/2
]1

t=0

− 4
n+ 2

∫ 1

0

(
1 + t

2

)(n+2)/2

dt


=

8π
n+ 2

[t(1 + t

2

)(n+2)/2
]1

t=0

− 4
n+ 4

[(
1 + t

2

)(n+4)/2
]1

t=0


=

8π
n+ 2

[
cos(θ) cos(θ/2)n+2 − 4

n+ 4
cos(θ/2)n+4

]0

θ=π/2

=
8π
[
cos(θ/2)n+2

(
4 cos(θ/2)2 − (n+ 4) cos(θ)

)]π/2
θ=0

(n+ 2)(n+ 4)

=
8π
[
cos(θ/2)n+2 (2(1 + cos(θ)) − (n+ 4) cos(θ))

]π/2
θ=0

(n+ 2)(n+ 4)

=
8π
[
cos(θ/2)n+2 (2 − (n+ 2) cos(θ))

]π/2
θ=0

(n+ 2)(n+ 4)

=
8π
(
21−(n+2)/2 − (2 − (n+ 2))

)
(n+ 2)(n+ 4)

=
8π(2−n/2 + n)
(n+ 2)(n+ 4)

which makes the Blinn-Phong normalization factor (n+2)(n+4)

8π(2−n/2+n)
, not n+8

8π .
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